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Abstract. A thin annular plate is subjected to a uniform tensile field at its inner edge which leads to compressive
circumferential stresses. When the intensity of the applied field is strong enough, elastic buckling occurs circum-
ferentially, leading to a wrinkling pattern. Using a linear non-homogeneous pre-bifurcation state, the linearised
eigenvalue problem describing this instability is cast as a fourth-order linear differential equation with variable
coefficients. This problem is investigated numerically and it is shown that the simple application of the Galer-
kin technique reported in the literature leads to gross errors in the corresponding approximations. Several novel
mathematical features of the eigenvalue problem are included as well.
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1. Introduction

Historically, the understanding of elastic instabilities in solids subjected to compressive loads
has always played a pivotal role in the efficient design of slender mechanical structures [1].
By far, the most studied case discussed in the literature pertains to the situation in which a
structure is subjected to a global compressive load. In this scenario, as the load is increased
through some critical value, the structure passes from its natural, undistorted configuration,
to an arbitrarily close equilibrium shape which is qualitatively different from the original one;
this is the so-called buckled state. From a mathematical point of view, buckling represents a
typical bifurcation phenomenon on which many of the modern tools of bifurcation theory
can be brought to bear [2].

Much less attention has been paid to the occurrence of elastic instabilities when a given
structure is subjected to global tensile loads, mostly because such problems are not as preva-
lent as the classical buckling phenomenon. Nevertheless, there are a number of practical
applications in which such problems crop up, and they have been the subject of several inves-
tigations which we briefly review below.

The buckling of an annular plate subjected to tensile stress along its inner edge has
attracted considerable interest due to its relevance in the manufacturing process of form-
ing a flat sheet metal blank into a cylindrical cup-shaped product, a mechanical operation
known as deep drawing; a full account of this theory can be found in [3, pp. 292–315] and
[4, pp. 328–347], which contain additional pointers to the literature. This process is charac-
terised by the use of a cylindrical punch and an annular die, the sheet being drawn radially
inwards over the die profile by the advancing punch. The stress/strain distribution in such
an operation is very complex and one has to rely on introducing reasonable simplifications
in the mathematical modelling. In understanding the possible instabilities of deep drawing, a
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Figure 1. The geometry of the annular plate subjected to a uniform tension field σ∗ on its inner boundary and
tension-free on the outer one. The variable hoop (σθθ ) and radial (σrr ) stresses are compressive and, respectively,
tensile, throughout the plate.

widely accepted approximation consists in considering an annular plate subjected to a uni-
form tension field along its inner edge (cf. [5–7]). Although the global loading is stabilising
with respect to the buckling instability, the presence of a hole in the plate leads to an interest-
ing pre-buckling stress distribution. The hoop stress, σθθ , is compressive, reaches its maximum
amplitude on the inner edge of the plate, and is directly proportional to the applied stress
σ∗ (see Figure 1). When this applied load reaches a critical value, the plate undergoes elastic
buckling circumferentially, a phenomenon referred to as elastic wrinkling in the literature.

Geckler [8] provided a first approximate study of this problem by considering the plastic
regime, and his work was then followed by many others (cf. [3, pp. 345–347]). A considerable
improvement of his results was achieved by Senior [5] who made several assumptions regard-
ing the deflected form of the plate and then evaluated the component quantities of the poten-
tial energy related to a small deformation. By equating the total energy tending to restore
equilibrium to that due to forces displacing it, he found the critical stability conditions; this
line of inquiry resulted in a set of lower and upper bounds for both the critical stress and the
number of circumferential wrinkles. Mansfield [9] dealt with the elastic buckling of an annu-
lar plate subjected to either compression or tension on its inner boundary. His approach was
based on the classical buckling equation of annular plates (for example, see [10, pp. 173–178])
together with a simplified pre-buckling state that led to closed-form solutions for his problem.
As already noted by Yu and Johnson [7], his solution is valid, strictly speaking, only for plates
with an infinite outer radius. A systematic analysis of both the elastic and plastic instabilities
related to annular plates in tension was undertaken by Yu and co-workers [6, 7]. However,
that work is open to some criticism that we shall present in detail over the next sections.

More recently, the wrinkle formation in thin plates (or membranes) has been the object
of several interesting studies. Friedl et al. [11] have showed numerically that buckling due to
global tension can occur as a result of special boundary conditions. For the case of a thin
rectangular plate loaded on two opposite sides, they showed that these conditions provide
a constraint for the lateral contraction due to the Poisson’s effect, whose role is to produce
lateral compressive stresses away from the boundary. This results in a sequence of wrinkles
parallel to the direction of applied tension. Cerda and Mahadevan [12] presented a heu-
ristic analysis of wrinkling in thin elastic sheets valid far in the nonlinear regime, dealing
mainly with various scaling laws for the wavelength of the wrinkles and their amplitude. In
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Figure 2. An annular plate subjected to uniform displacement fields on its boundaries. In this case the hoop stress
σθθ changes from compressive, near the inner boundary, to tensile, in the complementary region.

a follow-up work [13], Cerda discussed some biomedical applications regarding the effect of
background tension of the skin on the formation of wrinkles around circular scars.

The mechanics of wrinkle formation has also found novel applications in cell biomechan-
ics [14, 15], as it provides insight into living cell locomotion. Roughly speaking, the quan-
titative analysis of wrinkled patterns produced by cells crawling on elastic membranes gives
an indication of the force applied by the cell cytoskeleton. Géminard et al. [16] have pro-
vided an experimental and numerical study of a model that mimics this situation. They
employed the Donnell–von Kármán equations involving nonlinear kinematics, and used a lin-
ear pre-buckling state for a pre-stressed annular plate subjected to a uniform displacement
field along its inner boundary. In Figure 2 the initial stretching of the plate is due to the
(fixed) displacement field u2 imposed on the outer edge, while the loading is realised by apply-
ing the radial displacement field u1. The particular type of loading adopted yields a hoop
stress distributions that is compressive in a concentric region adjacent to the inner edge, while
in the remaining part of the plate this stress is tensile. The result is a wrinkling pattern local-
ised near the inner edge, and, as shown by Coman and Haughton in [17], several features of
this problem can be understood by looking at the linearised bifurcation equation.

Although only remotely related to the present work, we note here the original contribu-
tion [18] in which Gilabert at al. established numerically and experimentally the existence of
complex spatial patterns around defects such as holes or cracks in a thin stretched plate. The
“Maltese cross” buckling pattern reported in that reference is triggered by a local compres-
sive stress induced by the presence of the defect, and is strongly dependent on the thickness
of the plate, a situation similar to that depicted in Figure 2.

Our main aim in this work is to revisit the elastic wrinkling instabilities discussed in [6, 7]
and provide an assessment of the approximations reported therein. To this end, the paper is
laid out as follows. In order to make the work in this paper reasonably self-contained, in Sec-
tion 2 we formulate the non-homogeneous eigenvalue problem that governs the elastic insta-
bilities of the annular plate discussed above. We then proceed in Section 3 to embark on a
numerical investigation regarding the dependence of the lowest critical eigenvalue on various
quantities of interest, and perform a comparison with similar results in the literature. The
difficulties experienced by the approximate techniques for this problem are interpreted in light
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of the corresponding Rayleigh quotient, and the paper ends with a few remarks and some
open issues to be considered in future research.

2. Problem statement

We consider a thin annular plate of inner radius a, outer radius b, and thickness h(h/b �1),
corresponding to the situation shown in Figure 1. As usually, a cylindrical system of coordi-
nates (r, θ, z) is used to define various quantities of interest associated to this problem. Dis-
placement components in the r, θ , and z directions, respectively, are denoted by ur ,uθ , and
w. The internal strains of interest are defined according to

εrr = ∂ur

∂r
, εθθ = 1

r

(
∂uθ
∂θ

+ur

)
, εrθ = 1

2

(
1
r

∂ur

∂θ
+ ∂uθ
∂r

− uθ
r

)
, (1)

and the corresponding stresses are assumed to obey the classical Hooke’s Law

σi j =2µεi j +λ(εrr + εθθ )δi j , i, j ∈{r, θ}, (2)

where µ and λ are the Lamé constants and δi j is the usual Kronecker delta.
The linear pre-buckling state of stress in the annular plate is determined by solving the

system of equilibrium equations of plane stress elasticity (see [19, pp. 260–267])

∂σrr

∂r
+ 1

r

∂σrθ

∂θ
+ 1

r
(σrr −σθθ )=0, (3a)

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ 2

r
σrθ =0, (3b)

which must be supplemented with an appropriate set of boundary conditions. In this paper we
shall assume that the pre-buckling state is axisymmetric, i.e., ur =U (r) and uθ ≡ 0, for some
function U , while the boundary conditions are taken to be{

σrr (r)=σ∗
σrθ (r)=0,

for r =a, and

{
σrr (r)=0

σrθ (r)=0,
for r =b. (4)

After some simple manipulations, one finds that the variable pre-buckling stress distribution
in the plate is given by

σ (0)rr = σ∗a2b2

b2 −a2

(
1
r2

− 1
b2

)
and σ

(0)
θθ =−σ∗a2b2

b2 −a2

(
1
r2

+ 1
b2

)
, (5)

where the superscript 0 has been used to indicate that these quantities represent pre-bifurca-
tion fields.

The linearised bifurcation equation governing the instability of the annular plate can now
be given as (see [10 pp. 173–176], [20 pp. 89–91], [21 pp. 234–241] for details)

D∇4w−h

[
σ (0)rr

∂2w

∂r2
+σ (0)θθ

1
r

(
∂w

∂r
+ 1

r

∂2w

∂θ2

)]
=0, (6)

where D = Eh3/12(1−ν2) is the bending stiffness of the plate, ν is the Poisson’s ratio, and E
is Young’s modulus. Here

∇2 := ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
,

is the Laplacian in polar coordinates, and ∇4(•)≡∇2
(∇2(•)).
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In general, the method of separation of variables does not lead to closed form solutions
for the non-homogeneous bifurcation equation unless it is assumed a priori that the buckling
solution has axial symmetry; however, this is an unreasonable assumption as transpires from
direct numerical integration. Mansfield [9] ignored the 1/b2 terms in (5), and this led him to
an integrable case which allowed a simple analytical solution of (6).

Substituting (5) in (6), and rescaling the independent co-ordinate according to ρ :=r/b, the
bifurcation equation becomes

L0[w]−Λ2
(

1
ρ2

L−
1 [w]−L+

1 [w]
)

=0, (7)

where we have introduced the following differential operators

L±
1 := ∂2

∂ρ2
± 1
ρ

∂

∂ρ
± 1
ρ2

∂2

∂θ2
, L0 :=

(
∂2

∂ρ2
+ 1
ρ

∂

∂ρ
+ 1
ρ2

∂2

∂θ2

)2

,

and

Λ2 := a2b2

b2 −a2

(
h

D

)
σ∗ (8)

is the unknown non-dimensional eigenvalue; for later purposes, we set η :=a/b. Next, we look
for solutions of the bifurcation equation of the form

w(ρ, θ)= W (ρ) cos(nθ), (9)

where n ∈N is the mode number (the number of identical circumferential wrinkles). On mak-
ing use of this form of solution, we find

L0[w]=
{

W ′′′′ + 2
ρ

W ′′′ −
(

2n2 +1
ρ2

)
W ′′ +

(
2n2 +1
ρ3

)
W ′ +

[
n2(n2 −4)

ρ4

]
W

}
cos(nθ),

L±
1 [w]=

[
W ′′ ± 1

ρ
W ′ ∓ n2

ρ2
W

]
cos(nθ),

and, after some simple algebra, the amplitude W ≡ W (ρ) of the normal-mode solution can be
shown to satisfy the following differential equation with variable coefficients

W ′′′′ +A(ρ; Λ)W ′′′ +B(ρ; Λ)W ′′ +C(ρ; Λ)W ′ +D(ρ; Λ)W =0, η<ρ<1, (10)

where

A(ρ; Λ) := 2
ρ
, B(ρ; Λ) :=−

[
2n2 +1
ρ2

+Λ2
(

−1+ 1
ρ2

)]
,

C(ρ; Λ) := 1
ρ

[
2n2 +1
ρ2

+Λ2
(

1+ 1
ρ2

)]
, D(ρ; Λ) := n2

ρ2

[
n2 −4
ρ2

−Λ2
(

1+ 1
ρ2

)]
.

Equation (10) must be supplemented with appropriate boundary conditions, which can be
obtained by using the separation of variable method employed above. For the deep-drawing
processes discussed in [6, 7], the inner edge (ρ=η) was taken to be simply supported, while
the outer edge was assumed to be free. This results in the following set of conditions for W (ρ)

(see [6, 9], [21, pp. 236–237] for more details)
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W =0, for ρ=η, (11a)

W ′′ + ν

ρ
W ′ − νn2

ρ2
W =0, for ρ=η, 1, (11b)

W ′′′ + 1
ρ

W ′′ −
[

1+ (2−ν)n2

ρ2

]
W ′ +

[
(3−ν)n2

ρ3

]
W =0 for ρ=1, (11c)

irrespective of the pre-buckling state.
For the sake of completeness we shall dwell a little further on these four boundary con-

ditions. It is well known that the variational approach for the Kirchhoff theory of classical
linear elastic plates leads to the following two sets of natural and kinematic boundary condi-
tions,

either Mr =0 or
∂w

∂r
is prescribed, (12a)

either Qr + 1
r

∂Mrθ

∂θ
=0 or w is prescribed, (12b)

where Mr ,Mrθ , and Qr represent the bending moments and, respectively, the shear force asso-
ciated with the polar coordinates indicated (see [22, pp. 297–298]). For the simply supported
edge (ρ= η) we have used the kinematic boundary condition given in (12b) and the natural
one in (12a). For the free edge (ρ=1) there are no kinematic boundary conditions applicable
and hence we should enforce both natural boundary conditions in (12). These can then be
conveniently expressed in terms of the transverse displacement alone, using (9) and the clas-
sical formulae for plates [10, pp. 160–161], [20, pp. 208–209]

Mr =−D

(
∂2w

∂r2
+ ν

r

∂w

∂r
+ ν

r2

∂2w

∂θ2

)
,
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1
r

∂2w

∂r∂θ
− 1

r2

∂w

∂θ

)
,

Qr =−D
∂

∂r

(
∂2w

∂r2
+ 1

r

∂w

∂r
+ 1

r2

∂2w

∂θ2

)
,

thus leading to the boundary conditions recorded in (11). We note in passing that the rescal-
ing adopted above seems to have eliminated any small parameter in equations (10) and (11).
The material constant ν may have any value between 0 and 1/2, but usually it is about 0·3
for mild steel; in general, variations in ν affect the solutions of structural mechanics problems
very little. We therefore chose a convenient fixed value, equal to 0·3, in our numerical calcu-
lations. The only essential parameters that remain in (10) and (11) are the ratio a/b ≡η, the
mode number n, and the unknown eigenvalue Λ.

3. A numerical study

We perform numerical simulations of the bifurcation equation (10) that describes the tensile
instabilities of the annular plate considered in Section 2. Our main objective here is to discuss
the dependence of Λ on a/b and n, and to show that some of the previous approximate solu-
tions reported in the literature [6] are rather unsatisfactory when compared with their coun-
terparts obtained by numerical integration. To this end, the bifurcation equation is cast in the
standard form
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dw
dρ

=A(ρ; Λ, n)w, η<ρ<1 (13)

by introducing the usual dependent variables

w1(ρ) := W (ρ), w2(ρ) := W ′(ρ), w3(ρ) := W ′′(ρ), w4(ρ) := W ′′′(ρ),

and then letting w := (w1,w2,w3,w4)
T . The expression of the matrix A ∈ M4×4(R) can be

found by carrying out the above substitutions. Also, the boundary conditions (11) can be
written in vector form as

B1(ρ; n)w =0 for ρ=η, (14a)

B2(ρ; n)w =0 for ρ=1, (14b)

for some appropriate matrices B1, B2 ∈ M2×4(R).
Next, the compound matrix method [23, pp. 311–317] is used to integrate numerically the

boundary value problem (13) and (14); this is a well tested technique which performs particu-
larly well in calculating the response curves for a range of problems in solid mechanics [24–26].
A detailed account regarding the implementation of this method for a similar problem was
given by one of us in [24], and the reader is referred to that paper for more details. We have
also double checked our results using the boundary value solver AUTO97 [27] and the results
were found to be identical to within the numerical errors associated with the calculations.

By analogy with the classical Sturm-Liouville problems for ordinary differential equations
[28, pp. 42–78], one would expect that for any given n ≥0 and η≡a/b ∈ (0, 1), the boundary
value problem (10) and (11) has a set of real eigenvalues, say Λp(η, n), where p = 1, 2, . . . ,
ordered according to increasing order of magnitude. However, since we are dealing with a
generalised eigenvalue problem here, it is not necessarily true that these eigenvalues exist for
all stated values of η and n, nor that Λp →∞ as p →∞. Indeed, when n = 0 or n = 1, our
numerical searches revealed that there are no positive real eigenvalues. For all practical pur-
poses, it is the lowest positive eigenvalue, Λ1, which is of interest, and we shall focus our
attention on this quantity; for simplicity of notation we shall refer to it as Λ. Since according
to (8) the expression of Λ depends explicitly on a/b, it is useful to also use Λ∗ := σ∗b2h/D
as an alternative choice for the eigenvalues of (13) and (14); this will be subject to the same
restrictions as stated above.

In Figure 3 we illustrate the dependence of the first eigenvalue on the ratio a/b and the
mode number n. The plot shown consists of a series of curves, denoted by Cn , that describe
the dependence of Λ on η for each n =2, . . . , 13; the two arrows indicate the increasing direc-
tion of the number of wrinkles, n. For plates for which a �b −a, corresponding to those with
a small inner radius, the critical mode number is n =2, and the eigenvalues are given by the
lower part of C2; this is in qualitative agreement with Mansfield’s results for infinite annular
plates [9]. The critical mode number changes to n = 3 when a/b = 0·406, and this value of n
continues to be relevant until a/b = 0·62, when the critical number of wrinkles is increased
by 1 and the eigenvalues start following the curve C4. This switching process between the
response curves continues ad infinitum, and as a/b→1 the crossing frequency of the curves Cn

and Cn+1 increases, as it can be clearly seen in Figure 3. Also, Λ→∞ in that limit, although
this is not obvious from the recorded plots but it was confirmed by our careful numerical
simulations, and it is discussed further in the next section. The case of interest in a deep-
drawing operation corresponds to the situation when b − a � b in which the width of the
annular region is much smaller than the outer radius of the plate. Our numerical experiments
and the results recorded in Figure 3 show that as the value of a/b increases (getting closer
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Figure 3. The response curves Λ = Λ(η, n) for the buckling equation (10) corresponding to n = 2, . . . , 13; the
arrows indicate the direction of increasing n.

to 1) the critical mode number n cannot be predicted accurately because of its extreme sen-
sitivity with respect to this ratio.

It is important to establish the limit of validity for the occurrence of the elastic instability
discussed above. For the sake of completeness, next, we follow [7] and record such a result
in order to provide some orientative guidance for the interpretation of Figure 3. A detailed
quantitative assessment between the plastic and the elastic wrinkling instabilities is beyond
the scope of this paper. Most investigators have focused exclusively on the case when wrin-
kling occurs in the plastic regime [3, pp. 311–315], [4, pp. 343–345], [5, 8, 29], although if
elastic wrinkling is triggered before plastic yielding takes place, this results in an unsatisfac-
tory manufacturing operation. It is a well known fact [4, pp. 318–321] that under the given
type of loading and particular geometry adopted in this paper, plastic yielding occurs first on
the inner edge, r =a. By letting σY denote the yield stress of the material, the corresponding
Tresca yield criterion is

σ (0)rr −σ (0)θθ =σY for r =a.

Using (5), we find that

σ
(p)∗ =σY

(
1−η2

2

)
, (15)

where σ (p)∗ is the critical value of σ∗ for which the material enters the plastic range. On the
other hand, the definition of Λ allows us to express σ∗ in terms of this quantity, according to

σ∗ = DΛ2

hb2

(
1−η2

η2

)
. (16)
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The range of validity for our elastic analysis is obtained by enforcing σ∗ ≤σ (p)∗ , which can be
re-arranged in a more convenient form as

b −a

h
≥ Λ(1−η)
η
√

6(1−ν2)

√
E

σY
. (17)

The interpretation of this formula is straightforward. For a given annular plate, the constant
materials E and σY are assumed to be available, and by specifying the ratio a/b ≡η the value
of Λ can be obtained from Figure 3. In consequence, (17) provides a lower bound for the
width of the flange, b −a, in terms of the thickness of the plate, h.

In references [6, 7], Yu and his co-workers proposed some approximate results for the
eigenvalues of the bifurcation equation (7) using the method of separation of variables. A
Galerkin method à la Kantorovich was proposed in [6] in an attempt to improve an earlier
solution based on a variational formulation of (7); the solution in this case was obtained with
the help of the Rayleigh–Ritz approach via a simple choice of test function. However, these
authors did not compare their approximations against the full numerical solution reported
herein, and thus the validity of their results has remained unquestioned so far.

The comparison of our results with those corresponding to the elastic wrinkling problem
in [6] are shown in Figures 4 and 5, where the continuous lines represent the results of this
investigation and the dashed line the Galerkin approximations. In both plots we have used
the original scaling for eigenvalues employed by Yu and Zhang, and we have used the same
choice of values for n as in their work. The two arrows, the continuous and the dashed ones,
indicate the direction of increasing n for the two sets of curves. It turns out that the Galer-
kin solution provides a conservative estimate for the eigenvalues Λ∗, but it is in disagree-
ment with the numerical solution. The Galerkin approximation used by the above authors
required a choice of trial function identically satisfying the boundary conditions (11a) and
(11b), while the natural boundary condition (11c) was ignored. However, the expression of
this test function suggested in [6] is wrong, as the indicial equation for the differential equa-
tion associated with (11b) has a positive discriminant, and thus its solutions are of exponen-
tial type. We have used the correct expression for the trial function in plotting the results in
Figures 4 and 5. According to our numerical findings it seems that the critical stress σ∗ does
not decrease monotonically with increasing the inner radius r =a when the outer radius r =b
is held constant, an important fact that is not captured by the approximate solution.

In the literature on plastic wrinkling, many authors have employed the additional condi-
tion w(ρ, θ)≥0 for all (ρ, θ)∈[η, 1]× (0, 2π ] , because the possible deformations of the die
are assumed negligible in comparison to those experienced by the plate. This is not necessar-
ily true for elastic wrinkling, as noted in [6], and a possible candidate for the separable vari-
able solution (9) in the former case is, w(ρ, θ)= W (ρ)(1+ cos(nθ)). Thus, a natural question
is, what is the difference between the critical values of Λ as predicted by the two different
approaches? An elastic wrinkling stability analysis based on an energy method and using the
additional positivity condition for the transverse displacement was undertaken in [7], where
the kinematics adopted is similar to ours, and the prebuckling state is identical. According
to [29], the critical loads reported in that reference are slightly lower than those obtained
through alternative approaches and based on the same assumptions. We have compared the
critical curves presented [7] with our numerical solutions, and these results are summarised in
Figures 6 and 7; the arrows have the same meaning as in the previous two Figures already
shown. As clearly shown in these plots, the onset of elastic wrinkling in our case (and in
[6]) occurs much earlier than predicted in [7]. An individual comparison between the response
curves for n =4, 5, 6, 7 is shown in Figure 7.
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W (ρ) cos(nθ); the dashed lines are those given in [7] and based on an equivalent variational formulation of the
same bifurcation equation but under the assumption that w(ρ, θ)= W (ρ)(1+ cos(nθ)).
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Figure 7. A closer look at Figure 6 (the same conventions apply): n =4(a),n =5(b),n =6(c),n =7(d).
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To summarise, the approximate Galerkin solution of Yu and Zhang can be regarded as a
lower bound for the true eigenvalues of (10) and (11), although its practical relevance should
be justly regarded with suspicion. Also, imposing the additional kinematic constraint w≥0 on
the solutions of (7) results in much higher critical values for Λ.

4. Some approximations

To understand the reasons for the poor performance of the Galerkin method, we need to
recast the eigenvalue problem (10)–(11) in a more suitable form

M[W ]=Λ2N [W ], (18)

with M and N self-adjoint differential operators defined by

M[W ] := (
A(ρ)W ′′)′′ + (

B(ρ)W ′)′ +C(ρ)W, (19)

N [W ] := (
P(ρ)W ′)′ + Q(ρ)W, (20)

where

A(ρ) :=ρ, B(ρ) :=−2n2 +1
ρ

, C(ρ) := n2(n2 −4)
ρ3

,

and

P(ρ) :=ρ
(

−1+ 1
ρ2

)
, Q(ρ) := n2

ρ

(
1+ 1

ρ2

)
.

Such generalised eigenvalue problems are discussed very scarcely in the solid-mechanics lit-
erature; the only exception that we are aware of is the excellent book by Collatz [30] which
contains generalisations of Courant’s maximum-minimum principle and various comparison
theorems that lead to upper and lower bounds for Λ. Unfortunately, the theory developed in
that reference is not applicable in our context as it requires some rather stringent conditions
on M and N ; this will be explained below. First, it must be pointed out that since in (18)
the order of differentiation on the right-hand side is strictly less than the order of differenti-
ation on the left-hand side, the spectrum of a boundary eigenvalue problem associated with
such a differential equation is discrete and all eigenvalues have finite algebraic multiplicity (for
instance, see [31]).

The Rayleigh quotient for (18), denoted by R[W ] here, can be found in the usual way by
multiplying the equation by W and integrating the resulting equality from η to 1. On making
use of the integration by parts formula and the kinematic boundary condition W (η)=0, it is
found that

R[W ]=
∫ 1
η

W (ρ)M[W ](ρ)dρ∫ 1
η

Q(ρ)W 2(ρ)dρ−∫ 1
η

P(ρ)W ′2(ρ)dρ
. (21)

Since P ≥0 and Q>0, the denominator of this quotient can become very close to zero under
certain circumstances, and this is indeed the case as it is suggested by the numerical results
shown in Figure 3. Also, an arbitrary choice of test functions in either the Rayleigh–Ritz or
Galerkin methods can lead to a zero denominator and this seems to be the situation in [6]
(this zero denominator does occur for values of η outside the range shown in Figure 4). It
should be noted that most methods for approximating eigenvalues [22, pp. 401–413], [30], [32,
pp. 397–465], [33] of problems of the type (18) are based on the positive definiteness of the
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quadratic functional that appears in the denominator of (21). This condition is obviously vio-
lated in the present context, the proof of this fact following next. To this end, we define the
function ϕ : (0, 1]→R by

ϕ(x) :=n2
∫ 1

x

1
ρ

(
1+ 1

ρ2

)
W 2(ρ)dρ−

∫ 1

x

(
1
ρ

−ρ
)

W ′2(ρ)dρ, (22)

where W (ρ) is any smooth function (left unspecified for the time being), and our aim is to
show that one can always find two distinct numbers, say x1, x2 ∈ (0, 1) (depending on n), such
that ϕ(x1)ϕ(x2)≤0. This will ensure the existence of at least one zero for ϕ, and hence for the
denominator of the Rayleigh quotient (21).

Our first claim is that ϕ(1/n)≥0. Indeed,

ϕ

(
1
n

)
=n2

∫ 1

1/n

1
ρ

(
1+ 1

ρ2

)
W 2(ρ)dρ−

∫ 1

1/n

(
1
ρ

−ρ
)

W ′2(ρ)dρ

≥ 2n2
∫ 1

1/n
W 2(ρ)dρ−

(
n − 1

n

)∫ 1

1/n
W ′2(ρ)dρ, (23)

and the right-hand side of (23) is positive as can easily be inferred by considering a new func-
tion ψ : (0, 1]→R,

ψ(x) :=
∫ 1

x
W 2(ρ)dρ− 1

2x

(
1− 1

x2

)∫ 1

x
W ′2(ρ)dρ.

Clearly, this function is continuously differentiable, and a simple exercise shows that

ψ ′(x)=−W 2(x)+ 1
2x

(
1− 1

x2

)
W ′2(x)+ 1

2x2

(
1− 3

x2

)∫ 1

x
W ′2(ρ)dρ <0

if 0< x ≤ 1, i.e., ψ is a decreasing function on (0, 1], and hence ψ(x)≥ψ(1)= 0. By setting
x :=1/n the positivity of the expression mentioned above is recovered.

Consider now ϕ(x) when x ≈1 and W (ρ) satisfies the kinematic boundary condition (11a);
thus, we should require that W (x)=0. In this case we can approximate the expression of this
function by taking into account that W (ρ)=α(ρ− x)+o(ρ− x) and W ′(ρ)=α+o(1) for x ≤
ρ≤1 when x →1, where α := W ′(1). Together with (22) these approximations lead to

ϕ(x)=α2

[
n2

∫ 1

x

1
ρ

(
1+ 1

ρ2

)
(ρ− x)2 dρ−

∫ 1

x

(
1
ρ

−ρ
)

dρ

]
+o

(
(1− x)2

)

=α2

[
n2(x2 − x2 log x − log x −1)−

(
x2

2
− log x − 1

2

)]
+o

(
(1− x)2

)
,

as x → 1. The existence of x2 ∈ (0, 1) such that ϕ(x2)≤ 0 will follow once we show that the
expression in the square bracket is negative for 1− x arbitrarily close to zero; the reason for
this being that the square bracket is an o(1 − x) term but not an o((1 − x)2) one. With the
substitution y := x2 we note that this requirement amounts to

log y>
y(2n2 −1)− (2n2 −1)

yn2 + (n2 −1)
, (24)

for some y ∈ (0, 1), which in turn suggests considering h : (0, 1]→R defined by

h(y) := log y − (2n2 −1)(y −1)
yn2 + (n2 −1)

.



92 C.D. Coman and D.M. Haughton

Table 1. Approximate values of η(n) as given by (25).

n η(n) η(n) |η(n)−η(n)|

2 0·6479625332 0·7500000000 0·1020374668
3 0·8379153795 0·8888888888 0·0509735093
4 0·9077060613 0·9375000000 0·0297939387
5 0·9405976616 0·9600000000 0·0194023384
6 0·9586218956 0·9722222222 0·0136003266
7 0·9695436254 0·9795918367 0·0100482113
8 0·9766539110 0·9843750000 0·0077210890
9 0·9815385674 0·9876543209 0·0061157535

10 0·9850374627 0·9900000000 0·0049625373
11 0·9876288977 0·9917355371 0·0041066394
12 0·9896014053 0·9930555555 0·0034541502
13 0·9911373824 0·9940828402 0·0029454578

The derivative of this function is

h′(y)= y2n4 − y
[
2n2(n2 −1)+1

]+ (n2 −1)2

(yn2 +n2 −1)2
,

and solving the equation h′(y)=0, we find

y∗ =
(

1− 1
n2

)2

and y∗∗ =1,

the critical points of h. Since h′(y)<0 for y ∈ (y∗, y∗∗), the inequality (24) follows at once for
y in this range.

To summarise, we have shown that for each given n ≥ 2 one can find η(n) ∈ (0, 1) such
that the denominator of the Rayleigh quotient (21) becomes zero when η = η(n). There is
compelling numerical evidence that an even stronger result holds, namely, η(n) is unique and
Λ(η, n)→ ∞ as η→ η(n) but we have not been able to justify this rigorously. It might be
worth pointing out that very good approximations for η(n) can be obtained by setting to zero
the aforementioned denominator, and using W (ρ) :=ρ−η as an assumed form for the eigen-
modes of (10)–(11); the transcendental equation to be solved is then found to be

η2
(

n2 − 1
2

)
−n2η2 log η+ (1−n2) log η−

(
n2 − 1

2

)
=0, (25)

and its solutions for n = 2, . . . , 13 are recorded in Table 1. The arguments presented above
and the numerical experiments suggest that η(n)≈η(n) for n ≥4, where η(n)=1−1/n2 (see the
same table for further details).

The comparisons between these “blow-up” values of η and the response curves obtained
with the help of the compound matrix method are shown in Figure 8. The vertical dashed
lines correspond to the equations η= η(n) and the continuous curves are the ones already
presented in the previous section (see Figure 3). In spite of the many approximations made,
it turns out that the values predicted by (25) mirror closely the vertical asymptotes of the
response curves; this holds true even in the cases n = 2 and n = 3 which, strictly speaking,
lie outside the range of validity of the approximation made. One of the reasons for such a
success is due to the fact that the eigenmodes of the original boundary-value problem are
“almost” straight lines passing through x =η.
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Figure 8. A close look at the blow-up behaviour of the eigenvalues Λ(η, n) for n = 2, . . . , 13; the vertical dashed
lines correspond to the approximate solutions of the equation obtained by setting to zero the denominator of the
Rayleigh quotient (see (25)), while the continuous curves are those already presented in Figure 3.

Next, we show that it is possible to extract some useful information about the eigenvalues
of (18). We start from the observation that the Rayleigh quotient can be written more conve-
niently with the help of the original boundary conditions (11) and successive integration by
parts, as

R[W ]= I1 + (2n2 +1)I2 +n2(n2 −4)I3 + K

n2 I4 − I5
, (26)

where

I1 :=
∫ 1

η

ρW ′′2 dρ, I2 :=
∫ 1

η

W ′2

ρ
dρ, I3 :=

∫ 1

η

W 2

ρ3
dρ, (27a)

I4 :=
∫ 1

η

(
1+ 1

ρ2

)
W 2

ρ
dρ, I5 :=

∫ 1

η

ρ

(
−1+ 1

ρ2

)
W ′2 dρ, (27b)

and

K :=−n2(3−ν)W 2(1)−2νn2W (1)W ′(1)+ν
[
W ′2(1)− W ′2(η)

]
.

Without loss of generality, we shall normalise the eigenmodes of our eigenvalue problem by
the condition

∫ 1

η

ρW ′′2 dρ+
∫ 1

η

W ′2

ρ
dρ+

∫ 1

η

W 2

ρ3
dρ=1. (28)
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Since the coefficients of (10) are analytic functions in [η, 1] when −∞<Λ<∞ is regarded
as a parameter, the solutions of this equation are well-behaved functions, in particular
W, W ′, W ′′ are continuous; hence, these functions are bounded and the integrals in (28) are
finite for 0<η< η(n). Obviously, the normalised solutions satisfy I j = O(1) for j = 2, . . . , 5
as n → ∞. We are going to see that W 2(1),W (1)W ′(1) and W ′2(1)− W ′2(η) enjoy the same
property. The justification of this assertion follows easily by the application of the Schwarz
inequality for integrals. Letting f (ρ) :=√

ρW ′′(ρ) and g(ρ) := W ′(ρ)/√ρ, we get

∣∣∣∣
∫ 1

η

f (ρ)g(ρ)dρ

∣∣∣∣≤
(∫ 1

η

f 2(ρ)dρ

)1/2 (∫ 1

η

g2(ρ)dρ

)1/2

=√
I1 I2 ≤ 1

2
(I1 + I2)≤1,

which together with

∫ 1

η

f (ρ)g(ρ)dρ=
∫ 1

η

W ′′(ρ)W ′(ρ)dρ= 1
2

[
W ′2(1)− W ′2(η)

]

shows that W ′2(1)− W ′2(η)= O(1) as n → ∞. A similar calculation, this time with f (ρ) :=√
ρW (ρ) and the same g(ρ) as above, indicates that W 2(1)=O(1) as n →∞. Finally,

W (1)W ′(1)=
∫ 1

η

W ′2(ρ)dρ+
∫ 1

η

W (ρ)W ′′(ρ)dρ,

and each integral in this identity can be shown to be bounded independently of n; the first
one follows from the fact that 0< I2 ≤ 1 and the second one requires the application of the
Schwarz inequality again. In conclusion, W (1)W ′(1)=O(1) as n →∞.

Assuming now that n �1 and 0<η�η(n), it can be deduced from (26) that

Λ2 ≈
(

I3

I4

)
n2. (29)

Using elementary inequalities, it can be shown that 2≤ I4/I3 ≤η3 +1 which together with (29)
results in

Λ=O(n) or Λ= ξn, with
1√
2

≤ ξ ≤ 1√
η3 +1

. (30)

Strictly speaking this result is valid for n � 1 and η� η(n), but as we shall shortly see, its
limit of validity is far more general. To this end, comparisons between the above estimates
and our numerical runs for the problem (10)–(11) are summarised in Table 2, where Λnum

signifies the lowest positive eigenvalue of this problem as obtained by numerical integration
(see Section 3). We have considered a sample of both relatively small and large representa-
tive values of n (10, 30, 50, and 70, respectively) for η∈{0·1, 0·3, 0·5}, and it seems that our
estimates are fairly robust.

When n �1 and η≈η(n) an estimate similar to (30) seems to be out of hand, mainly because
of the blow-up behaviour of the eigenvalues Λ. Nevertheless, in this regime one could use the
Rayleigh quotient (26) together with the approximation W (ρ) :=ρ−η, and this leads to quite
accurate results. We record below the expression of the eigenvalues obtained in this way

Λ2 = α1n4 +α2n2 +α3

β1n2 +β2
, (31)
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Table 2. A comparison between the lower/upper bounds for Λ given by (30), and the corresponding val-
ues obtained by numerical integration of (10)–(11).

n η Λnum Λmin :=n/
√

2 Λmax :=n/
√
η3 +1

70 0·1 50·6964 49·4975 69·9650
– 0·3 50·6964 49·4975 69·0737
– 0·5 50·6964 49·4975 65·9966
50 0·1 36·4372 35·3553 49·9750
– 0·3 36·4372 35·3553 49·3384
– 0·5 36·4372 35·3553 47·1405
30 0·1 22·1145 21·2132 29·9850
– 0·3 22·1145 21·2132 29·6030
– 0·5 22·1146 21·2132 28·2843
10 0·1 7·59053 7·07106 9·99501
– 0·3 7·59177 7·07106 9·86772
– 0·5 7·64527 7·07106 9·42810

where

α1 :=−η
2

2
+2η− log η− 3

2
, α2 :=2η2 −8η− (3−ν)(1−η)2 −2ν(1−η)+2 log η+6,

α3 :=− log η, β1 :=η2 −η2 log η− log η−1, β2 :=−η
2

2
+ log η+ 1

2
.

Figure 9 contains the comparison of (31) with the numerical data. In order to stress the dra-
matic improvement displayed by such a simple formula, the same scaling and axis limits as
in Figure 4 have been used. The agreement with the numerical results is exceptionally good
when a/b ≡η>0·7 for all the curves included, although n is relatively small; the same holds
true for larger values of the mode number but for the sake of brevity these results are not
shown here. This unexpected outcome should come as no surprise if one remembers that the
only kinematic boundary condition in (11) is the first one, which the test function used in (31)
incidentally satisfies.

We note in passing a related effort, the original work of Fu [26] who reports some asymp-
totic approximations for the response curves in the problem of buckling of a spherical shell
subjected to hydrostatic pressure. His idea was to use the mode number n as a large pertur-
bation parameter in conjunction with the classical WKB method. Although there is a great
deal of similarity between his Figure 1 and our Figure 3, there are some subtle differences
which make that approach unfruitful in the present context. One of them is the fact that,
unlike in [26], for our problem Λ is at least O(n) for n �1, and this leads to some ambigu-
ity as to the right expansion for the eigenvalues. Moreover, even in the simple case Λ=O(n),
the expressions of the roots for the characteristic equation of (10) look rather unpromising.
Hence, the analytical calculations become unmanageable right from the outset. Also, in that
work the switching process between Cn and Cn+1 (see Section 3) is rather different, in the
sense that for η≈1 the critical eigenvalues lie mostly on Cn , for some large n ∈N, and there
is no blow-up in the response curves.

In closing this section, it is worth mentioning a different, more rigorous approach for
obtaining approximations to the eigenvalues of (18) for the case when η≈η(n) but no restric-
tions are placed on the mode number. Such an alternative is based on the close resemblance
of this problem with the Orr–Sommerfeld equation (see [23, pp. 153–245] for a comprehensive
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Figure 9. Comparisons between the response curves obtained by numerical integration (continuous line), and the
approximation (31) (dotted line) for n = 4, . . . , 10; the numbers by each pair of curves indicate the corresponding
value of the mode number n.

discussion of this topic). Regarding Λ as a large perturbation parameter and trying to apply
the classical WKB method, one finds that the characteristic equation of the differential equa-
tion (10) is

p4 − p2
(

−1+ 1
ρ2

)
=0,

which has two repetead roots, p1 = p2 ≡0, and two real distinct ones, p3,4 =±√
1/ρ2 −1 which

coalesce when ρ= 1. In the terminology of differential equations, this means that ρ= 1 is a
turning point for (10). The four linearly independent solutions away from the turning point
can be constructed in the usual fashion [23, pp. 164–180], although the presence of a repeated
root does cause a slight complication. Unfortunately, these solutions fail near ρ=1, and hence
in the vicinity of this point we need to derive a different set of four linearly independent
solutions that ultimately have to be matched to the previously found set. Within this context,
the so-called inner problem for (10) can be found by using a local stretching transformation
of the form ζ := Λγ (1/ρ− 1), where γ > 0 is to be fixed by the usual balancing arguments.
Carrying out the appropriate calculations, it is found that γ =2/3 and the inner equation has
the form

d4Ŵ

dζ 4
−2ζ

d2Ŵ

dζ 2
+2

dŴ

dζ
=0,

where Ŵ (ζ ) := W
(
(ζ/Λ2/3 +1)−1

)
. This problem can be solved by the method of Laplace

integrals and it is reminiscent of a similar equation obtained by Langer [34] in the study of
some hydrodynamical problems. In light of the excellent agreement between our approxima-
tions and the numerics, we have not considered imperative to pursue this line of attack here
but we shall report these results elsewhere.
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5. Conclusions

In this study we have investigated an eigenvalue problem for the elastic instabilities of an
annular plate in tension on its inner edge and stress-free on the outer one. This configuration
can serve as a simplified model for the wrinkling instabilities encountered in deep-drawing
manufacturing processes.

The thrust of the work reported has been twofold. Firstly, we have explored the accu-
racy of some approximate solutions proposed in the literature, and have performed a numer-
ical study of the dependence of the lowest eigenvalue on the critical mode number and η,
the ratio of the inner and, respectively, the outer radii of the plate. Our results suggest that
the naive application of the Galerkin method leads to unsatisfactory results for this problem,
and the cause of this disagreement is rooted in the lack of positive-definiteness of the Ray-
leigh quotient (cf. [30, Section 15.1]), and the poor choice of test function. Secondly, some
mathematical arguments have been employed to consolidate and amplify our understanding
of the behaviour of the eigenvalues for this problem. In particular, an interesting feature that
emerged in the course of our work is the blow-up behaviour of the eigenvalues, Λ≡Λ(η, n),
in the governing boundary-value problem describing the wrinkling instability. We have been
able to provide both numerical and analytical evidence which suggests that Λ(η, n)→∞ as
η→ η(n), where η(n) ∈ (0, 1) is a sequence of numbers such that η(n) → 1 as n → ∞. A sim-
ple approximation for these blow-up points has also been given. We remark in passing that,
for the eigenvalue problem describing the buckling of annular plates in shearing, it is very
likely that a similar blow-up occurs (see [35, Figure 2]), and this aspect will be analysed in
the future. In that case, the pre-buckling solution can be calculated explicitly from (1) with
an appropriate set of boundary conditions, and the bifurcation equation (6) can be easily
modified to include the pre-buckling shear stress. There is an extra complication, though,
and this is due to the modified form of the normal mode solution (9), which has to be
replaced by w(ρ, θ)= W1(ρ) cos(nθ)+ W2(ρ) sin(nθ). The upshot of this change in the form
of w(ρ, θ) is that (10) will become a complex differential equation for the complex-valued
function W (ρ) := W1(ρ)+ i W2(ρ).

In a related paper [17], we have investigated the wrinkling instability of an annular plate
corresponding to the scenario outlined in Figure 2. The motivation behind that work was
somewhat different from the one presented herein, but the analysis was conducted upon an
equation similar to (10). By exploiting the presence of a natural large parameter and using a
WKB analysis, we have been able to show in that case that the wrinkling instability can be
described by a reduced second-order boundary-value problem. Although such a large param-
eter is absent from (10), the analysis of the previous section shows that Λ can act as a sub-
stitute when η is sufficiently close to η(n). Within that regime, there is scope to extend the
asymptotic analysis of [17] to the present problem, and this is the subject of a forthcoming
study.

Finally, in future works we shall assess the validity of the Galerkin approximation for
the elasto-plastic counterpart of the wrinkling problem discussed in this paper (see [36] as
well).
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